NON-BI-ORDERABILITY OF KNOT GROUPS FROM DEHN'S PRESENTATION

ADAM CLAY AND COLIN DESMARAIS

Abstract

We present a computational approach to determining non-bi-orderability of knot groups based on Dehn's presentation. Our computations indicate that it may be possible to use the Alexander polynomial of a knot to prove non-bi-orderability of its knot group. This is in contrast with the result of [9], where the authors showed that knowledge of the Alexander polynomial alone is insufficient to conclude that the knot group is bi-orderable.

July 13, 2017

1. Introduction

Given a group G, a strict total ordering < of its elements is called a left-ordering if $g<h$ implies $f g<f h$ for all $f, g, h \in G$. A left-ordering of a group which is also right-invariant, in the sense that $g<h$ implies $g f<h f$ for all $f, g, h \in G$, is called a bi-ordering of G.

Motivated by the conjectured connection between orderability properties of the fundamental group and Heegaard-Floer homology, a natural class of groups to investigate from an orderability perspective are the fundamental groups of 3 -manifolds [2]. This note deals specifically with the fundamental groups of knot complements - which are known to be left-orderable since they have infinite abelianization [1]—and focuses on determining when these groups are not bi-orderable.

Specifically, the purpose of this note is to demonstrate a brute force approach for proving non-bi-orderability of knot groups. Our method is similar to the approach of [3] and the appendix of [8], where the authors use a computational approach to determining non-left-orderability of the fundamental groups of certain 3 -manifolds.

Our results provide computational evidence in favour of the following conjecture.
Conjecture 1.1. If K is a knot in S^{3} and $\pi_{1}\left(S^{3} \backslash K\right)$ is bi-orderable, then the Alexander polynomial $\Delta_{K}(t)$ has at least one positive real root.

This conjecture has already been proved in several cases. For example, if K is fibred or if K is a two-bridge knot, then it is know that $\Delta_{K}(t)$ must have a positive real root whenever $\pi_{1}\left(S^{3} \backslash K\right)$ is bi-orderable $[7,6]$. We add to the evidence with the following theorem.

Theorem 1.2. Suppose that K is a knot with fewer than 10 crossings, different from 9_{49}. If $\Delta_{K}(t)$ has no positive real roots, then $\pi_{1}\left(S^{3} \backslash K\right)$ is not bi-orderable.

[^0]The paper is organized as follows. In Section 2 we review Dehn's presentation for the purpose of establishing conventions and presenting a solution to the word problem. In Section 3 we present our algorithm for proving non-bi-orderability, and in Section 4 we state our results and provide two worked examples. In the final section we give the proof of Theorem 1.2.

2. Dehn's presentation and the word problem

Recall that Dehn's presentation of a knot group is computed from an oriented diagram of a knot K as follows. The arcs of the diagram divide the plane into regions, which we label a, b, c, \ldots, these will serve as the generators of the group. From the i-th crossing one creates a relator r_{i} by reading around the crossing, and listing the generators encountered with alternating exponents. Our convention is that for each crossing, one begins to the right of the underarc leaving the crossing and proceeds in a clockwise manner around the crossing, listing the generators encountered with alternating signs as in Figure 1. We use capital letters in place of inverses, for ease of notation. We arrive at the presentation:

$$
\begin{equation*}
\left\langle a, b, c, \ldots \mid r_{1}, r_{2}, r_{3}, \ldots\right\rangle . \tag{2.0.1}
\end{equation*}
$$

From this presentation, one arrives at Dehn's presentation by setting any one generator equal to the identity.

Figure 1. A crossing yielding the relation $d C b A$.
Given Dehn's presentation of a knot group, our algorithm also requires a solution to the word problem. In the case of alternating knots, we sketch the method of [5] below.

Beginning with presentation (2.0.1), colour the unbounded region of the diagram black and checkboard-colour the remaining regions. Cyclically permute the relations appearing in (2.0.1), and take inverses if necessary, so that every relator begins with a generator corresponding to a black region. If the generator corresponding to the unbounded region appears in a relator, after permuting and taking inverses the relator must begin with that generator. Then set the generator corresponding to the unbounded region equal to the identity to produce Dehn's presentation of $\pi_{1}\left(S^{3} \backslash K\right)$.

Following [5], we then produce a complete, terminating list of rewriting rules from the relations prepared as in the previous paragraph:
(1) For every relation of length three, say $U z V$, find the relation of length three ending with U (such a relation always exists [5, Claim 3.3]). Say it is $W y U$. Then produce the following list of rules:
(a) $v \rightarrow U z$
(b) $z V \rightarrow W y$
(c) $V U \rightarrow Z$
(d) $Z W \rightarrow V Y$
(2) For every relation of length four, say $z U y V$, we have the following list of rules:
(a) $z U \rightarrow v Y$
(b) $y V \rightarrow u Z$
(c) $Z v \rightarrow U y$
(d) $Y u \rightarrow V z$
(e) If there is a relation of length three ending with V, say it is $X w V$, then replace Rule 2a with $z U \rightarrow X w Y$, and replace Rule 2c with $Z X \rightarrow U y W$.
(f) If there is a relation of length three ending with U, say it is $X w U$, then replace Rule 2b with $y V \rightarrow X w Z$, and replace Rule 2d with $Y X \rightarrow V z W$.

Example 2.1. Consider the knot 8_{15}, labeled as in Figure 2.

Figure 2. The knot 8_{15} with regions labeled and crossings numbered.

From the method above we arrive at the following relators, one from each crossing:
(1) AfE
(2) $B f A$
(3) $C g B$
(4) $D g C$
(5) $E h D$
(6) $f B i E$
(7) $g D i B$
(8) $h E i D$

We then produce the following rewriting system using the method above:

$e \rightarrow A f$	$a \rightarrow B f$	$b \rightarrow C g$	$c \rightarrow D g$
$f E \rightarrow B f$	$f A \rightarrow C g$	$g B \rightarrow D g$	$g C \rightarrow E h$
$E A \rightarrow F$	$A B \rightarrow F$	$B C \rightarrow G$	$C D \rightarrow G$
$F B \rightarrow E F$	$F C \rightarrow A G$	$G D \rightarrow B G$	$G E \rightarrow C H$
$d \rightarrow E h$	$f B \rightarrow A f I$	$g D \rightarrow C g I$	$h E \rightarrow E h I$
$h D \rightarrow A f$	$i E \rightarrow C g F$	$i B \rightarrow E h G$	$i D \rightarrow A f H$
$D E \rightarrow H$	$F A \rightarrow B i F$	$G C \rightarrow D i G$	$H E \rightarrow E i H$
$H A \rightarrow D F$	$I C \rightarrow E f G$	$I E \rightarrow B g H$	$I A \rightarrow D h F$

3. The ALGORITHM

It is well known that a group G is left-orderable if and only if there exists a subset $P \subset G$, called the positive cone, satisfying
(1) $P \cdot P \subset P$
(2) $P \cap P^{-1}=\emptyset$
(3) $P \cup P^{-1}=G \backslash\left\{1_{G}\right\}$.

Suppose that G is finitely generated, and fix a generating set S of G. Denote the word length of an element $g \in G$ relative to S by $\ell_{S}(g)$. For each positive integer n, set $G_{n}=\left\{g \in G \mid \ell_{S}(g) \leq\right.$ $n\}$. If G is left-orderable with positive cone P, then for every n there exists a set $Q_{n} \subset G$ with
(a) $\left(Q_{n} \cdot Q_{n}\right) \cap G_{n} \subset Q_{n}$
(b) $Q_{n} \cap Q_{n}^{-1}=\emptyset$
(c) $Q_{n} \cup Q_{n}^{-1}=G_{n} \backslash\left\{1_{G}\right\}$.

For example, having fixed a positive cone P we can take $Q_{n}=P \cap G_{n}$. As a consequence, if such a Q_{n} does not exists for some n, then the group is not left-orderable. An algorithmic check for the existence of such a set Q_{n} is the basis of the computational approach to left-orderability taken in $[3,8]$.

This generalizes to the case of bi-orderability as follows. In addition to (1)-(3) above, the positive cone of a bi-ordering also satisfies
(4) $g P g^{-1} \subset P$ for all $g \in G$.

Let n and m be positive integers. If G is bi-orderable, then for all n and m, there exists a set $Q_{n, m} \subset G$ so that
(a) $\left(Q_{n, m} \cdot Q_{n, m}\right) \cap G_{n} \subset Q_{n, m}$
(b) $Q_{n, m} \cap Q_{n, m}^{-1}=\emptyset$
(c) $Q_{n, m} \cup Q_{n, m}^{-1}=G_{n} \backslash\left\{1_{G}\right\}$
(d) $g\left(Q_{n, m}\right) g^{-1} \cap G_{n} \subset Q_{n, m}$ for all $g \in G_{m}$.

Remark 3.1. If $Q_{n, m}$ satisfying (a)-(d) above exists, then $Q_{n, m}^{-1}$ will also satisfy (a)-(d).

As in the case of left-orderability, if G is bi-orderable with positive cone P then $Q_{n, m}=P \cap G_{n}$ satisfies the properties above. Thus, if such a $Q_{n, m}$ does not exists for some n and m, then G is not bi-orderable.

Therefore the following algorithm is a test for non-bi-orderability of a group G. It takes as input integers n and m and a subset $Q \subset G_{n}$, it then attempts to construct a set $Q_{n, m}$ containing Q and satisfying the conditions above, and returns false when $Q_{n, m}$ containing Q does not exist.

```
function CONSTRUCTQ \(\left(Q \subset G_{n}\right)\)
    while \((Q \cdot Q) \cap G_{n} \not \subset Q\) do
        \(Q:=(Q \cup(Q \cdot Q)) \cap G_{n}\)
        for \(g \in G_{m}\) do
            \(Q:=\left(Q \cup g Q g^{-1}\right) \cap G_{n}\)
        end for
    end while
    if \(1_{G} \in Q\) then return false
    end if
    if \(Q \cup Q^{-1}=G_{n} \backslash\left\{1_{G}\right\}\) then return true
    end if
    \(g:=\mathrm{a}\) word in \(G_{n} \backslash\left(Q \cup Q^{-1} \cup\left\{1_{G}\right\}\right)\)
    return construct \(\mathrm{Q}(Q \cup\{g\})\) or construct \(\mathrm{Q}\left(Q \cup\left\{g^{-1}\right\}\right)\)
end function
```

By Remark 3.1 and property (c), for any $g \in G_{n}$, we may begin by assuming $g \in Q$ (this amounts to assuming that we are constructing the positive cone of a bi-ordering in which g is positive).

In practice this function is quite slow, but it can be improved in some special cases. Focusing on the special case when G is an alternating knot group, we make two changes to improve the speed of the search.

First, every element g of the knot group G has a corresponding normal form $n(g)$ that results from iteratively applying the complete, terminating rewriting system of Section 2 to any representative word w of g (here G, implicitly is represented by Dehn's presentation). Therefore we first represent $g \in G$ by its normal form, and in place of $\ell_{S}(g)$ we calculate the length of every $g \in G$ by taking the word length of the normal form $n(g)$. Using normal forms and this definition of length makes it much faster to determine whether or not an element is the identity, or whether or not it is a member of G_{n}. Therefore, in what follows G_{n} consists of $g \in G$ for which the corresponding normal form $n(g)$ is a word of length less than or equal to n.

Second, we know that G is finitely generated and $G / G^{\prime} \cong \mathbb{Z}$, and thus G is bi-orderable if and only if there exists a bi-ordering of G^{\prime} that is invariant under conjugation by the elements of G [10]. That is, if G is bi-orderable, then G^{\prime} admits a cone P^{\prime} satisfying (1)-(3) above (with G replaced by G^{\prime}) as well as
(4) $g P^{\prime} g^{-1} \subset P^{\prime}$ for all $g \in G$.

So for all n and m, there must exist a set $Q_{n, m}^{\prime}$ satisfying (a)-(d) above (with G_{n} replaced by $G_{n}^{\prime}=G^{\prime} \cap G_{n}$), and with (d) replaced by

$$
\text { (d') } g\left(Q_{n, m}^{\prime}\right) g^{-1} \cap G_{n}^{\prime} \subset Q_{n, m}^{\prime} \text { for all } g \in G_{m}
$$

Thus as a second improvement, we can replace all instances of G_{n} with G_{n}^{\prime}, so that we have a smaller search space. Note that G_{n}^{\prime} can be calculated from G_{n} by simply applying the abelianization homomorphism to every element of G_{n}, and keeping those elements which map to zero.

Example 3.2. When G is the knot group of 8_{15}, for example, we calculate G_{2}^{\prime} as follows. We begin with the Dehn presentation with relations as in Example 2.1:

$$
G=\langle a, b, c, d, e, f, g, h, i \mid A f E, B f A, C g B, D g C, E h D, f B i E, g D i B, h E i D\rangle
$$

whose abelianization homomorphism $\phi: G \rightarrow \mathbb{Z}$ is defined by

$$
\begin{array}{ll}
\phi(a)=1 & \phi(f)=2 \\
\phi(b)=1 & \phi(g)=2 \\
\phi(c)=1 & \phi(h)=2 \\
\phi(d)=1 & \phi(i)=0 \\
\phi(e)=1 . &
\end{array}
$$

Then we construct the list of all words which can be expressed as a product of two or fewer generators, and from the list we discard all words whose normal form is not length two. For example, under the rewriting system from Example 2.1 the word $A b$ becomes $A C g$, so it is discarded; while $F g$ is in normal form and so we keep it. We then apply the above abelianization homomorphism to the remaining words and discard those that do not map to zero. After these operations we find $G_{2}^{\prime}=\{i, I, F g, f G, g F, G f, F h, f H, H f, h F, g H, G h, h G, H g\}$.

4. Results

We ran our program on all alternating knots with fewer than 10 crossings, and it successfully showed that the knots $8_{15}, 9_{35}, 9_{38}$ and 9_{41} have non-bi-orderable knot groups. In all other cases, the program either found a subset $Q_{n, m}^{\prime}$ satisfying (a)-(c) and (d') for the given n and m, or it did not terminate.

Below are the examples of 8_{15} and 9_{35}, the cases of 9_{38} and 9_{41} arein Appendix A.
Example 4.1. The knot group of 8_{15} has Dehn presentation

$$
G=\langle a, b, c, d, e, f, g, h, i \mid A f E, B f A, C g B, D g C, E h D, f B i E, g D i B, h E i D\rangle .
$$

Our algorithm produces the following output for $n=3$ and $m=2$. First, we calculate that $G_{3}^{\prime}=$ $\{i, I, F g, f G, g F, G f, F h, f H, H f, h F, g H, G h, h G, H g, A f A, A f C, A f D, \ldots\}$, and we consider
adding each of these elements in turn in an attempt to construct $Q_{3,2}^{\prime}$ satisfying properties (a), (b), (c) and (d') from Section 3.

Below, each "-" represents a new instance of the function $\operatorname{CONSTRUCTQ}(Q)$, while indentation represents nested instances for which Q contains all of the preceding elements and is closed under properties (a) and (d'). As described in the pseudocode, false is returned for each instance where the identity is contained in the closure of Q under properties (a) and (d'). By Remark 3.1, we may begin by assuming that $I \in Q$. Moreover, once we have added an element to Q, taking the closure under conjugation by elements of length 3 means we do not need to test conjugate elements at subsequent steps: So, for example, once we add $F g$ to Q we need not carry out the test of adding $g F$, since $g F=g(F g) g^{-1}$. Our program then produces the following output:

- $F g$ added to Q
- Fh added to Q
bgfaFdHBdFhDIbfFgFeIEhgFhDiIIIdGDiFhIdIhgFhDiIIIdGHiIfFhFiDfFhIgId FhDIIIGiABIbFEdDFdHBdFhDIbfFgFeIEhgFhDiIIIdGDiFhIdIhgFhDiIIIdGHiI
fFhFiDfFhIgIdFhDIiIGiAaFhAadgFhDiIIIdGDeGHBdFhDIbfFgFeIEhgFhDiIII $d G D i F h I d I h g F h D i I I I d G H i B d F h D I$ is the identity.
- try adding $H f$ to Q instead
- $H g$ is equivalent to $H f A a F g A a$ (thus $H g$ is already in Q).
- Af A added to Q
$a A f A B I b A F A f A f E I e$ is the identity.
- try adding $a F a$ to Q instead
- AfC added to Q
$A f C c E f F g F e I C$ is the identity.
- try adding $c F a$ to Q instead
- AfD added to Q

FfAfDFaFafFgbGDhAfDHdBgaFaGbaFgAgHfB is the identity.

- try adding $d F a$ to Q instead
$H d F a h H f B d F a f a a F a A F b f H f F$ is the identity.
Neither $A f D$ nor $d F a$ can be added to Q. Thus we cannot form a positive cone.
- try adding $G f$ to Q instead
- Fh added to Q

FhcGfFIfCcfFhFfGfFCbIfFhFiIB is the identity.

- try adding $H f$ to Q instead
- Gh added to Q
cbFahCGff BgGhGbIF f H f FF BBgGhGbIbBIbgGhcGhFFBgGhGbI fFIff HgGhGA BBgGhGbIbBIbf BhCGff BgGhGbIFfHfFFBBgGhGbIbBIbgGhcGhFFBgGhGbIf FIff HgGhGcH FBgGhGbIf FIfhDIdCCCGffBgGhGbIFfHfFFBBgGhGbIbBIbg GhcGhFFBgGhGbIfFIff is the identity.
- try adding $H g$ to Q instead

$$
\text { - Af } A \text { added to } Q
$$

- aAfABIbAFAfAfEIe is the identity.
- try adding $a F a$ to Q instead
- AfC added to Q

AfCcHgCIcC is the identity.

- try adding $c F a$ to Q instead
- AfD added to Q
$d D A f D d H i B D A f D d b G c F a g I h D H g g D A f D d G g H g G$ is the identity.
- try adding $d F a$ to Q instead
$H d F a h H f B d F a f a a F a A F b f H f F$ is the identity.
Neither $A f D$ nor $d F a$ can be added to Q. Thus we cannot form a positive cone.
We conclude that $\pi_{1}\left(S^{3} \backslash 8_{15}\right)$ is not bi-orderable, in particular there is no set $Q_{3,2}^{\prime}$ satisfying properties (a), (b), (c) and (d') of Section 3.

Example 4.2. In the case of the knot 9_{35}, there are ways to exploit the symmetry of the knot which allows for a proof which is nearly human-readable. Calculating a presentation of the knot group from the diagram below, we find:
$\pi_{1}\left(S^{3} \backslash 9_{35}\right)=\langle a, b, c, d, e, f, g, h, i, j \mid B d A, A f C, C h B, e A d B, e B j A, g C f A, g A j C, i B h C, i C j B\rangle$

Figure 3. The knot 9_{35} with regions labeled and crossings numbered.
With $n=4$ and $m=1$ our program gives the following output. First, we calculate that $G_{4}^{\prime}=\{E, I, G, \ldots\}$. Begin with $E \in Q$. Then:
$-G$ added to Q
$-I$ added to Q
$-I c B E b A E a C a C I c H a G A h B G b A$ is the identity. Thus we cannot form a positive cone.
try adding i to Q instead

- $D f$ added to Q
-cDfCEhCaGAcGHhiHbDfCEchCaGAcGHhbDDfdBiaAGaCGcAHB
is the identity. Thus we cannot form a positive cone.
try adding $F d$ to Q instead
- FfaFdABEbFcGAEaCgEGfdFdDcGCiHiIAbEBaEihIcBdFdDcGCiBEbAEaIbC
is the identity. Thus we cannot form a positive cone.

Leaving our program to run produces roughly thirty more lines of output. However, with our program having ruled out the possibility of a positive cone Q containing either $\{E, G, I\}$ or $\{E, G, i\}$, observe that there are three automorphisms $\phi_{1}, \phi_{2}, \phi_{3}: G \rightarrow G$ of order two arising from the three axes of reflective symmetry in Figure 3. Restricted to the generators e, g, i of $\pi_{1}\left(S^{3} \backslash 9_{35}\right)$, they act as:

$$
\begin{aligned}
& \phi_{1}(e)=E, \phi_{1}(g)=I, \phi_{1}(i)=I \\
& \phi_{2}(e)=I, \phi_{2}(g)=G, \phi_{2}(i)=E \\
& \phi_{3}(e)=G, \phi_{3}(g)=E, \phi_{3}(i)=I .
\end{aligned}
$$

Therefore if we suppose there exists Q containing $\{E, g, i\}$, then $\phi_{2}(Q)$ is a positive cone which contains $\left\{\phi_{2}(E), \phi_{2}(g), \phi_{2}(i)\right\}=\{E, G, i\}$, which is not possible. To rule out the final case, if Q were to contain $\{E, g, I\}$ then $\left(\phi_{1}(Q)\right)^{-1}$ would be a positive cone which contains $\left\{\phi_{1}(E)^{-1}, \phi_{1}(g)^{-1}, \phi_{1}(I)^{-1}\right\}=\{E, G, i\}$, again an impossibility.

Therefore $\pi_{1}\left(S^{3} \backslash 9_{35}\right)$ is not bi-orderable.

5. PROOF OF THEOREM 1.2

Last, we collect the necessary information to prove Theorem 1.2. First, if a knot K is either 2bridge or fibred, and $\Delta_{K}(t)$ has no positive real roots, then $\pi_{1}\left(S^{3} \backslash K\right)$ is not bi-orderable [7, 6]. Of the knots with fewer than 10 crossings, the following knots have Alexander polynomials with no positive real roots and are neither fibred nor 2-bridge, and so are not covered by either of these theorems: $8_{15}, 9_{16}, 9_{35}, 9_{38}, 9_{41}, 9_{49}$. The knot group of 9_{16} admits a presentation with two generators and one tidy relator [6], and thus it is not bi-orderable [4]. Of the remaining knots, $8_{15}, 9_{35}, 9_{38}$ and 9_{41} have non-bi-orderable groups, with our program providing the proofs found in Section 4 and Appendix 5. The remaining knot, 9_{49}, cannot be addressed with our approach because our solution to the word problem only applies to alternating knots, and 9_{49} is not alternating.

Appendix A. The groups of 9_{38} and 9_{41} are not bi-Orderable

The knot group of 9_{38} is:
$\pi_{1}\left(S^{3} \backslash 9_{38}\right)=\langle a, b, c, d, e, f, g, h, i, j \mid B e A, C f B, D f C, A g D, h A e B, g A h J, h I g J, g I f D, f I h B\rangle$
We attempt to construct $Q:=Q_{n, m}^{\prime}$ with $n=3$ and $m=2$. The program produces the following output, assuming $E \in Q$:
$-F$ added to Q
$-G$ added to Q
$-H$ added to Q

- $A i$ added to Q
-bDaBfAiFbHaGAAdFbEBBdEIaAiAHieAiIfFFFiDHaHaAiAhJAijJHjAhiID AihH HdiIFiI is the identity.
-try adding $I a$ to Q instead
- Bj added to Q
-dFgAbBjBfIaFaGbBjBfDAHagGiGdABjhHHaDHgGIaAbEBagGIgJGjG is the identity.
-try adding $J b$ to Q instead
-cDGbJbBjAEaJgGdCbJbBjIfIaAbEBaFFiJabbJbBjIfIaAbEBaFFiJBeJJEEa
$I a A A g B b b J b B j I f I a A b E B a F F i J B e J b E a I a A b A E a G$ is the identity
-try adding h to Q instead
- $A i$ added to Q
-aAiAaGAdFhfFDbBDAigGGdbIhf F FiIFiDAidB is the identity.
-try adding $I a$ to Q instead
-eIaEbhBchCcDGhggGGGdCbIhf FFiIFiBfIaFaGeIaEbhBchCcDGhggGGGdCbI
hf FFiIFiBgJeIaEbhBchCcDGhggGGGdCjJIajJGjaEAA is the identity
-try adding g to Q instead
$-C E C G j H g g c B F d E D b a E A C c d g D E C G g h g D E d J j g J g c B g c B F d E D b a E A C c d g D E C h g D E$
dHbAEaIfgFicgcBFdEDbaEACcdgDEChgDEdHCeAIGjHggcBFdEDbaEACcdgDEC
GghgDEdJjgJgiiGdgDEgcFCcECIiEIhgDEdHhfdgDEFHacBFbaEAjAIGjHggcBFd
EDbaEACcdgDECGghgDEdJjgJJgiiGdgDEgcFCcECIiEIhgDEdHhfdgDEFHaJfGdg
$D E g c F C c E C A g b E B a F$ is the identity.
-try adding f to Q instead
- G added to Q
$-H$ added to Q
-eAiGdCAFHbAEaBfHjf AEaJhaE f H FccCbFHbAEaBfHjf AEaJhBcf HFfCDgG
fgAbEBaIaHbAEaBEeDGdCAFHbAEaBfHjfAEaJhaEf HFccCbFHbAEaBfHjf
AEaJhBcfHFfCDgGfgdEbFHbAEaBfHjfAEaJhBfiffFfI is the identity
-try adding h to Q instead
-BhffFbCAhgGGaAhaEcbGhgGBf AhgGGaAhaEccfGF ffFfCCFiAhgGGaAhaEccf
GFffFfCCFhaEfeEAfIhiI is the identity.
-try adding g to Q instead
$-i B d g D E b d f g F f D B h E H b B g b a E A b A E a B I h g D E d H h A F A g e E f e E E a g D E d f a E H j A g e E f$
$e E E a J g E G$ is the identity.

Thus $\pi_{1}\left(S^{3} \backslash 9_{38}\right)$ is not bi-orderable.
The knot group of 9_{41} is:

$$
\pi_{1}\left(S^{3} \backslash 9_{41}\right)=\langle a, b, c, d, e, f, g, h, i, j \mid E h A, A i B, B i C, C j D, D j E, i A h F, j F h E, j G i F, i G j C\rangle
$$

We attempt to construct $Q:=Q_{n, m}^{\prime}$ with $n=4$ and $m=1$, and begin by assuming $I \in Q$. Then the program produces the following output:
$-J$ added to Q

- Af added to Q
-bfDDaAf AJdJdhJhAf HaIAjJH fGJgFaBAfbIAFiAfIBcDDaAfAJdJdhJhAf HaI AjJH fGJgFaBAfbIACcAEDDaAf AJdJdhJhAfHaIAjJHfGJgFjAfJeJaBAfbCA $h h A f H a I A E f J F J e H a b A f B c C$ is the identity.
-try adding $F a$ to Q instead
$-A D$ added to Q
$-A G$ added to Q
$-B g$ added to Q
-eaEbBgBeJdABgaADDAiBgIcJCEbBgBADJbBgBADjEjBgJeiBgI is the identity.
-try adding $G b$ to Q instead
$-B E$ added to Q
$-C f$ added to Q
$-h I c C f C c A D C i I C C f i I F a i I I c C f i H c C f i I F a i I I c C f C C C f F B E f$ is the identity.
-try adding $F c$ instead
$-D g$ added to Q
- iaBdDgDbBEBbDgAhEDgebBEBHDgIBdDgDbBEBbDgbIDgiiIIIB
is the identity.
-try adding $G d$ instead
- $E f$ added to Q
$-i G e E f E g I c F c C i I A E f a A J a b b I E f i I F h I H f J a F a A j B b I B B$ is the identity.
-try adding $F e$ instead
-Ij added to Q
-aBbIjBbIjDGbcADCdAbCgGdJBEjGcDDGbcADCdaFaAdBbhd DFcdGjGbcADCJgDHBbf JeIjDGbcADCdEaFaAjFiIjIB is the identity.
-try adding $J i$ instead
-JiFgF fJiFdeFeEjGdJDdCgGdJBEjGcDDGbcADCdaFaAdDf
GiFeIfIjJidBiJgF f JiFdeFeEjGdJDdCgGdJBEjGcDDGbcAD
CdaFaAdDfGiFeIjJfJJiFjIcADCbCFfJiFdeFeEjGdJDdCgGd
$J B E j G c D D G b c A D C d a F a A d D f c C D F c d I c D$ is the identity.
-try adding $e b$ instead
-bhHbebBEIehFaHebBjCebcBFabbebBJCebcBFab is the identity.
-try adding $g a$ instead
-gabiIIIBcJgajJADjJC is the identity.
-try adding $d a$ instead
-djFFdaf FI fbiIIIB f HaFaAhJdabadaAJBDcdaCcadaACjjFFdafFIfbiIIIBf Ha

FaAhJdabadaAJBhJadaAeJEjFiFdafFIfIf HGdjFFdafFIfbiIIIBf HaFaAhJda $b h d a H J B D d a g J$ is the identity.
-try adding j instead

- $A f$ added to Q
- $A D$ added to Q
-aIf HBaADAaaADAaIAAbjhBAfbFjBaADAaIAbjeADdjDEJjADdjDJiJhAf Ha
IAjiBADiIIbADIAbjBbjGjGjBaADAaIAbjeADdjDEJcADCgIcADCjiccADCCJ
$g I j i J j B$ is the identity.
-try adding $d a$ instead
-HjHadaAhBAfbIJIjJIhaJdaiIAfiIIjAaI AbjjHadaAhBAfbIJIjJBAfbcICJI $b d a B A f b B B A f b i B$ is the identity.
-try adding $F a$ instead
$-A D$ added to Q
-fhADiIIHjFaADAajAijjJjIIFaI is the identity.
-try adding $d a$ instead
- $A G$ added to Q
-caAGAadaAeIAGiFjfECjjFajjJJ is the identity.
-try adding $g a$ instead
-eCHhgaHjFaJjiIIIhjcIAgaaHdjFaJjiIIDhiBFabEAgaaHdjFaJjiIIIDhEjjJje DdaHjFaJjiIIhaHHjFaJjiIIhEjehFaAd is the identity.

Thus $\pi_{1}\left(S^{3} \backslash 9_{41}\right)$ is not bi-orderable.

References

[1] S. Boyer, D. Rolfsen, and B. Wiest. Orderable 3-manifold groups. Ann. Institut Fourier (Grenoble), 55:243288, 2005.
[2] Steven Boyer, Cameron McA. Gordon, and Liam Watson. On L-spaces and left-orderable fundamental groups. Math. Ann., 356(4):1213-1245, 2013.
[3] Danny Calegari and Nathan M. Dunfield. Laminations and groups of homeomorphisms of the circle. Invent. Math., 152(1):149-204, 2003.
[4] I. M. Chiswell, A. M. W. Glass, and John S. Wilson. Residual nilpotence and ordering in one-relator groups and knot groups. Preprint, available via http://arxiv.org/abs/1405.0994.
[5] Fabienne Chouraqui. Rewriting systems in alternating knot groups. International Journal of Algebra and Computation, 16(04):749-769, 2006.
[6] Adam Clay, Colin Desmarais, and Patrick Naylor. Testing bi-orderability of knot groups. Preprint, available via http://arxiv.org/abs/1410.5774.
[7] Adam Clay and Dale Rolfsen. Ordered groups, eigenvalues, knots, surgery and L-spaces. Math. Proc. Cambridge Philos. Soc., 152(1):115-129, 2012.
[8] Steffen Kionke, Jean Raimbault, and Nathan Dunfield. On geometric aspects of diffuse groups. Preprint, available via http://arxiv.org/abs/1411.6449.
[9] Geoff Naylor and Dale Rolfsen. Generalized torsion in knot groups. Canadian Mathematical Bulletin. Available online, http://dx.doi.org/10.4153/CMB-2015-004-4.
[10] Bernard Perron and Dale Rolfsen. On orderability of fibred knot groups. Math. Proc. Cambridge Philos. Soc., 135(1):147-153, 2003.

Department of Mathematics, 420 Machray Hall, University of Manitoba, Winnipeg, MB, R3T 2 N 2.
E-mail address: Adam.Clay@umanitoba.ca, umdesmac@myumanitoba.ca
URL: http://server.math.umanitoba.ca/~claya/

[^0]: Adam Clay was partially supported by NSERC grant RGPIN-2014-05465.
 2000 MATHEMATICS SUBJECT CLASSIFICATION. PRIMARY 57M25, 57M27, 06F15

