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Abstract. We present a computational approach to determining non-bi-orderability of knot

groups based on Dehn’s presentation. Our computations indicate that it may be possible to

use the Alexander polynomial of a knot to prove non-bi-orderability of its knot group. This is

in contrast with the result of [9], where the authors showed that knowledge of the Alexander

polynomial alone is insufficient to conclude that the knot group is bi-orderable.
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1. Introduction

Given a group G, a strict total ordering < of its elements is called a left-ordering if g < h

implies fg < fh for all f, g, h ∈ G. A left-ordering of a group which is also right-invariant, in

the sense that g < h implies gf < hf for all f, g, h ∈ G, is called a bi-ordering of G.

Motivated by the conjectured connection between orderability properties of the fundamental

group and Heegaard-Floer homology, a natural class of groups to investigate from an orderability

perspective are the fundamental groups of 3-manifolds [2]. This note deals specifically with the

fundamental groups of knot complements—which are known to be left-orderable since they have

infinite abelianization [1]—and focuses on determining when these groups are not bi-orderable.

Specifically, the purpose of this note is to demonstrate a brute force approach for proving non-

bi-orderability of knot groups. Our method is similar to the approach of [3] and the appendix

of [8], where the authors use a computational approach to determining non-left-orderability of

the fundamental groups of certain 3-manifolds.

Our results provide computational evidence in favour of the following conjecture.

Conjecture 1.1. If K is a knot in S3 and π1(S
3 \ K) is bi-orderable, then the Alexander

polynomial ∆K(t) has at least one positive real root.

This conjecture has already been proved in several cases. For example, if K is fibred or if K is a

two-bridge knot, then it is know that ∆K(t) must have a positive real root whenever π1(S
3 \K)

is bi-orderable [7, 6]. We add to the evidence with the following theorem.

Theorem 1.2. Suppose that K is a knot with fewer than 10 crossings, different from 949. If

∆K(t) has no positive real roots, then π1(S
3 \K) is not bi-orderable.
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The paper is organized as follows. In Section 2 we review Dehn’s presentation for the purpose

of establishing conventions and presenting a solution to the word problem. In Section 3 we

present our algorithm for proving non-bi-orderability, and in Section 4 we state our results and

provide two worked examples. In the final section we give the proof of Theorem 1.2.

2. Dehn’s presentation and the word problem

Recall that Dehn’s presentation of a knot group is computed from an oriented diagram of a knot

K as follows. The arcs of the diagram divide the plane into regions, which we label a, b, c, . . .,

these will serve as the generators of the group. From the i-th crossing one creates a relator

ri by reading around the crossing, and listing the generators encountered with alternating

exponents. Our convention is that for each crossing, one begins to the right of the under-

arc leaving the crossing and proceeds in a clockwise manner around the crossing, listing the

generators encountered with alternating signs as in Figure 1. We use capital letters in place of

inverses, for ease of notation. We arrive at the presentation:

(2.0.1) 〈a, b, c, . . . | r1, r2, r3, . . .〉.

From this presentation, one arrives at Dehn’s presentation by setting any one generator equal

to the identity.

c

b

a

d

Figure 1. A crossing yielding the relation dCbA.

Given Dehn’s presentation of a knot group, our algorithm also requires a solution to the word

problem. In the case of alternating knots, we sketch the method of [5] below.

Beginning with presentation (2.0.1), colour the unbounded region of the diagram black and

checkboard-colour the remaining regions. Cyclically permute the relations appearing in (2.0.1),

and take inverses if necessary, so that every relator begins with a generator corresponding to

a black region. If the generator corresponding to the unbounded region appears in a relator,

after permuting and taking inverses the relator must begin with that generator. Then set

the generator corresponding to the unbounded region equal to the identity to produce Dehn’s

presentation of π1(S
3 \K).

Following [5], we then produce a complete, terminating list of rewriting rules from the relations

prepared as in the previous paragraph:

(1) For every relation of length three, say UzV , find the relation of length three ending

with U (such a relation always exists [5, Claim 3.3]). Say it is WyU . Then produce the

following list of rules:
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(a) v → Uz

(b) zV →Wy

(c) V U → Z

(d) ZW → V Y

(2) For every relation of length four, say zUyV , we have the following list of rules:

(a) zU → vY

(b) yV → uZ

(c) Zv → Uy

(d) Y u→ V z

(e) If there is a relation of length three ending with V , say it is XwV , then replace

Rule 2a with zU → XwY , and replace Rule 2c with ZX → UyW .

(f) If there is a relation of length three ending with U , say it is XwU , then replace

Rule 2b with yV → XwZ, and replace Rule 2d with Y X → V zW .

Example 2.1. Consider the knot 815, labeled as in Figure 2.

1
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Figure 2. The knot 815 with regions labeled and crossings numbered.

From the method above we arrive at the following relators, one from each crossing:

1 AfE

2 BfA

3 CgB

4 DgC

5 EhD

6 fBiE

7 gDiB

8 hEiD

We then produce the following rewriting system using the method above:
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e→ Af a→ Bf b→ Cg c→ Dg

fE → Bf fA→ Cg gB → Dg gC → Eh

EA→ F AB → F BC → G CD → G

FB → EF FC → AG GD → BG GE → CH

d→ Eh fB → AfI gD → CgI hE → EhI

hD → Af iE → CgF iB → EhG iD → AfH

DE → H FA→ BiF GC → DiG HE → EiH

HA→ DF IC → EfG IE → BgH IA→ DhF

3. The algorithm

It is well known that a group G is left-orderable if and only if there exists a subset P ⊂ G,

called the positive cone, satisfying

(1) P · P ⊂ P
(2) P ∩ P−1 = ∅
(3) P ∪ P−1 = G \ {1G}.

Suppose that G is finitely generated, and fix a generating set S of G. Denote the word length of

an element g ∈ G relative to S by `S(g). For each positive integer n, set Gn = {g ∈ G | `S(g) ≤
n}. If G is left-orderable with positive cone P , then for every n there exists a set Qn ⊂ G with

(a)
(
Qn ·Qn

)
∩Gn ⊂ Qn

(b) Qn ∩Q−1n = ∅
(c) Qn ∪Q−1n = Gn \ {1G}.

For example, having fixed a positive cone P we can take Qn = P ∩ Gn. As a consequence, if

such a Qn does not exists for some n, then the group is not left-orderable. An algorithmic check

for the existence of such a set Qn is the basis of the computational approach to left-orderability

taken in [3, 8].

This generalizes to the case of bi-orderability as follows. In addition to (1)-(3) above, the

positive cone of a bi-ordering also satisfies

(4) gPg−1 ⊂ P for all g ∈ G.

Let n and m be positive integers. If G is bi-orderable, then for all n and m, there exists a set

Qn,m ⊂ G so that

(a)
(
Qn,m ·Qn,m

)
∩Gn ⊂ Qn,m

(b) Qn,m ∩Q−1n,m = ∅
(c) Qn,m ∪Q−1n,m = Gn \ {1G}
(d) g(Qn,m)g−1 ∩Gn ⊂ Qn,m for all g ∈ Gm.
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Remark 3.1. If Qn,m satisfying (a)-(d) above exists, then Q−1n,m will also satisfy (a)-(d).

As in the case of left-orderability, if G is bi-orderable with positive cone P then Qn,m = P ∩Gn

satisfies the properties above. Thus, if such a Qn,m does not exists for some n and m, then G

is not bi-orderable.

Therefore the following algorithm is a test for non-bi-orderability of a group G. It takes as input

integers n and m and a subset Q ⊂ Gn, it then attempts to construct a set Qn,m containing Q

and satisfying the conditions above, and returns false when Qn,m containing Q does not exist.

function constructQ(Q ⊂ Gn)

while (Q ·Q) ∩Gn 6⊂ Q do

Q := (Q ∪ (Q ·Q)) ∩Gn

for g ∈ Gm do

Q := (Q ∪ gQg−1) ∩Gn

end for

end while

if 1G ∈ Q then return false

end if

if Q ∪Q−1 = Gn \ {1G} then return true

end if

g:= a word in Gn \ (Q ∪Q−1 ∪ {1G} )

return constructQ(Q ∪ {g}) or constructQ(Q ∪ {g−1})
end function

By Remark 3.1 and property (c), for any g ∈ Gn, we may begin by assuming g ∈ Q (this

amounts to assuming that we are constructing the positive cone of a bi-ordering in which g is

positive).

In practice this function is quite slow, but it can be improved in some special cases. Focusing

on the special case when G is an alternating knot group, we make two changes to improve the

speed of the search.

First, every element g of the knot group G has a corresponding normal form n(g) that results

from iteratively applying the complete, terminating rewriting system of Section 2 to any rep-

resentative word w of g (here G, implicitly is represented by Dehn’s presentation). Therefore

we first represent g ∈ G by its normal form, and in place of `S(g) we calculate the length of

every g ∈ G by taking the word length of the normal form n(g). Using normal forms and this

definition of length makes it much faster to determine whether or not an element is the identity,

or whether or not it is a member of Gn. Therefore, in what follows Gn consists of g ∈ G for

which the corresponding normal form n(g) is a word of length less than or equal to n.

Second, we know that G is finitely generated and G/G′ ∼= Z, and thus G is bi-orderable if and

only if there exists a bi-ordering of G′ that is invariant under conjugation by the elements of

G [10]. That is, if G is bi-orderable, then G′ admits a cone P ′ satisfying (1)-(3) above (with G

replaced by G′) as well as
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(4’) gP ′g−1 ⊂ P ′ for all g ∈ G.

So for all n and m, there must exist a set Q′n,m satisfying (a)-(d) above (with Gn replaced by

G′n = G′ ∩Gn), and with (d) replaced by

(d’) g(Q′n,m)g−1 ∩G′n ⊂ Q′n,m for all g ∈ Gm.

Thus as a second improvement, we can replace all instances of Gn with G′n, so that we have

a smaller search space. Note that G′n can be calculated from Gn by simply applying the

abelianization homomorphism to every element of Gn, and keeping those elements which map

to zero.

Example 3.2. When G is the knot group of 815, for example, we calculate G′2 as follows. We

begin with the Dehn presentation with relations as in Example 2.1:

G = 〈a, b, c, d, e, f, g, h, i | AfE,BfA,CgB,DgC,EhD, fBiE, gDiB, hEiD〉

whose abelianization homomorphism φ : G→ Z is defined by

φ(a) = 1 φ(f) = 2

φ(b) = 1 φ(g) = 2

φ(c) = 1 φ(h) = 2

φ(d) = 1 φ(i) = 0

φ(e) = 1.

Then we construct the list of all words which can be expressed as a product of two or fewer

generators, and from the list we discard all words whose normal form is not length two. For

example, under the rewriting system from Example 2.1 the word Ab becomes ACg, so it is

discarded; while Fg is in normal form and so we keep it. We then apply the above abelianization

homomorphism to the remaining words and discard those that do not map to zero. After these

operations we find G′2 = {i, I, Fg, fG, gF,Gf, Fh, fH,Hf, hF, gH,Gh, hG,Hg}.

4. Results

We ran our program on all alternating knots with fewer than 10 crossings, and it successfully

showed that the knots 815, 935, 938 and 941 have non-bi-orderable knot groups. In all other

cases, the program either found a subset Q′n,m satisfying (a)-(c) and (d’) for the given n and

m, or it did not terminate.

Below are the examples of 815 and 935, the cases of 938 and 941 arein Appendix A.

Example 4.1. The knot group of 815 has Dehn presentation

G = 〈a, b, c, d, e, f, g, h, i | AfE,BfA,CgB,DgC,EhD, fBiE, gDiB, hEiD〉.

Our algorithm produces the following output for n = 3 and m = 2. First, we calculate that G′3 =

{i, I, Fg, fG, gF,Gf, Fh, fH,Hf, hF, gH,Gh, hG,Hg,AfA,AfC,AfD, . . .}, and we consider
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adding each of these elements in turn in an attempt to construct Q′3,2 satisfying properties (a),

(b), (c) and (d’) from Section 3.

Below, each ”-” represents a new instance of the function CONSTRUCTQ(Q), while inden-

tation represents nested instances for which Q contains all of the preceding elements and is

closed under properties (a) and (d’). As described in the pseudocode, false is returned for each

instance where the identity is contained in the closure of Q under properties (a) and (d’). By

Remark 3.1, we may begin by assuming that I ∈ Q. Moreover, once we have added an element

to Q, taking the closure under conjugation by elements of length 3 means we do not need to

test conjugate elements at subsequent steps: So, for example, once we add Fg to Q we need

not carry out the test of adding gF , since gF = g(Fg)g−1. Our program then produces the

following output:

- Fg added to Q

- Fh added to Q

bgfaFdHBdFhDIbfFgFeIEhgFhDiIIIdGDiFhIdIhgFhDiIIIdGHiIfFhFiDfFhIgId

FhDIiIGiABIbFEdDFdHBdFhDIbfFgFeIEhgFhDiIIIdGDiFhIdIhgFhDiIIIdGHiI

fFhFiDfFhIgIdFhDIiIGiAaFhAadgFhDiIIIdGDeGHBdFhDIbfFgFeIEhgFhDiIII

dGDiFhIdIhgFhDiIIIdGHiBdFhDI is the identity.

- try adding Hf to Q instead

- Hg is equivalent to HfAaFgAa (thus Hg is already in Q).

- AfA added to Q

aAfABIbAFAfAfEIe is the identity.

- try adding aFa to Q instead

- AfC added to Q

AfCcEfFgFeIC is the identity.

- try adding cFa to Q instead

- AfD added to Q

FfAfDFaFafFgbGDhAfDHdBgaFaGbaFgAgHfB is the identity.

- try adding dFa to Q instead

HdFahHfBdFafaaFaAFbfHfF is the identity.

Neither AfD nor dFa can be added to Q. Thus we cannot form a positive cone.

- try adding Gf to Q instead

- Fh added to Q

FhcGfFIfCcfFhFfGfFCbIfFhFiIB is the identity.

- try adding Hf to Q instead

- Gh added to Q

cbFahCGffBgGhGbIFfHfFFBBgGhGbIbBIbgGhcGhFFBgGhGbIfFIffHgGhGA

BBgGhGbIbBIbfBhCGffBgGhGbIFfHfFFBBgGhGbIbBIbgGhcGhFFBgGhGbIf

FIffHgGhGcHFBgGhGbIfFIfhDIdCCCGffBgGhGbIFfHfFFBBgGhGbIbBIbg

GhcGhFFBgGhGbIfFIff is the identity.

- try adding Hg to Q instead

- AfA added to Q
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- aAfABIbAFAfAfEIe is the identity.

- try adding aFa to Q instead

- AfC added to Q

AfCcHgCIcC is the identity.

- try adding cFa to Q instead

- AfD added to Q

dDAfDdHiBDAfDdbGcFagIhDHggDAfDdGgHgG is the identity.

- try adding dFa to Q instead

HdFahHfBdFafaaFaAFbfHfF is the identity.

Neither AfD nor dFa can be added to Q. Thus we cannot form a positive cone.

We conclude that π1(S
3 \ 815) is not bi-orderable, in particular there is no set Q′3,2 satisfying

properties (a), (b), (c) and (d’) of Section 3.

Example 4.2. In the case of the knot 935, there are ways to exploit the symmetry of the knot

which allows for a proof which is nearly human-readable. Calculating a presentation of the

knot group from the diagram below, we find:

π1(S
3\935) = 〈a, b, c, d, e, f, g, h, i, j | BdA,AfC,ChB, eAdB, eBjA, gCfA, gAjC, iBhC, iCjB〉

1

2

3

4

5

6

7

8
9

a

b

c

d

e

f

g
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j

Figure 3. The knot 935 with regions labeled and crossings numbered.

With n = 4 and m = 1 our program gives the following output. First, we calculate that

G′4 = {E, I,G, . . .}. Begin with E ∈ Q. Then:

-G added to Q

-I added to Q

-IcBEbAEaCaCIcHaGAhBGbA is the identity. Thus we cannot form a positive cone.

try adding i to Q instead

-Df added to Q

-cDfCEhCaGAcGHhiHbDfCEchCaGAcGHhbDDfdBiaAGaCGcAHB
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is the identity. Thus we cannot form a positive cone.

try adding Fd to Q instead

- FfaFdABEbFcGAEaCgEGfdFdDcGCiHiIAbEBaEihIcBdFdDcGCiBEbAEaIbC

is the identity. Thus we cannot form a positive cone.

Leaving our program to run produces roughly thirty more lines of output. However, with our

program having ruled out the possibility of a positive cone Q containing either {E,G, I} or

{E,G, i}, observe that there are three automorphisms φ1, φ2, φ3 : G → G of order two arising

from the three axes of reflective symmetry in Figure 3. Restricted to the generators e, g, i of

π1(S
3 \ 935), they act as:

φ1(e) = E, φ1(g) = I, φ1(i) = I

φ2(e) = I, φ2(g) = G,φ2(i) = E

φ3(e) = G,φ3(g) = E, φ3(i) = I.

Therefore if we suppose there exists Q containing {E, g, i}, then φ2(Q) is a positive cone

which contains {φ2(E), φ2(g), φ2(i)} = {E,G, i}, which is not possible. To rule out the fi-

nal case, if Q were to contain {E, g, I} then (φ1(Q))−1 would be a positive cone which contains

{φ1(E)−1, φ1(g)−1, φ1(I)−1} = {E,G, i}, again an impossibility.

Therefore π1(S
3 \ 935) is not bi-orderable.

5. proof of theorem 1.2

Last, we collect the necessary information to prove Theorem 1.2. First, if a knot K is either 2-

bridge or fibred, and ∆K(t) has no positive real roots, then π1(S
3 \K) is not bi-orderable [7, 6].

Of the knots with fewer than 10 crossings, the following knots have Alexander polynomials with

no positive real roots and are neither fibred nor 2-bridge, and so are not covered by either of

these theorems: 815, 916, 935, 938, 941, 949. The knot group of 916 admits a presentation with

two generators and one tidy relator [6], and thus it is not bi-orderable [4]. Of the remaining

knots, 815, 935, 938 and 941 have non-bi-orderable groups, with our program providing the proofs

found in Section 4 and Appendix 5. The remaining knot, 949, cannot be addressed with our

approach because our solution to the word problem only applies to alternating knots, and 949
is not alternating.

Appendix A. The groups of 938 and 941 are not bi-orderable

The knot group of 938 is:

π1(S
3 \ 938) = 〈a, b, c, d, e, f, g, h, i, j | BeA,CfB,DfC,AgD, hAeB, gAhJ, hIgJ, gIfD, fIhB〉

We attempt to construct Q := Q′n,m with n = 3 and m = 2. The program produces the

following output, assuming E ∈ Q:
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-F added to Q

-G added to Q

-H added to Q

-Ai added to Q

-bDaBfAiFbHaGAAdFbEBBdEIaAiAHieAiIfFFFiDHaHaAiAhJAijJHjAhiID

AihHHdiIF iI is the identity.

-try adding Ia to Q instead

-Bj added to Q

-dFgAbBjBfIaFaGbBjBfDAHagGiGdABjhHHaDHgGIaAbEBagGIgJGjG is

the identity.

-try adding Jb to Q instead

-cDGbJbBjAEaJgGdCbJbBjIfIaAbEBaFFiJabbJbBjIfIaAbEBaFFiJBeJbEa

IaAAgBbbJbBjIfIaAbEBaFFiJBeJbEaIaAbAEaG is the identity

-try adding h to Q instead

-Ai added to Q

-aAiAaGAdFhfFDbBDAigGGdbIhfFFiIF iDAidB is the identity.

-try adding Ia to Q instead

-eIaEbhBchCcDGhggGGGdCbIhfFFiIF iBfIaFaGeIaEbhBchCcDGhggGGGdCbI

hfFFiIF iBgJeIaEbhBchCcDGhggGGGdCjJIajJGjaEAA is the identity

-try adding g to Q instead

-CECGjHggcBFdEDbaEACcdgDECGghgDEdJjgJgcBgcBFdEDbaEACcdgDEChgDE

dHbAEaIfgF icgcBFdEDbaEACcdgDEChgDEdHCeAIGjHggcBFdEDbaEACcdgDEC

GghgDEdJjgJgiiGdgDEgcFCcECIiEIhgDEdHhfdgDEFHacBFbaEAjAIGjHggcBFd

EDbaEACcdgDECGghgDEdJjgJgiiGdgDEgcFCcECIiEIhgDEdHhfdgDEFHaJfGdg

DEgcFCcECAgbEBaF is the identity.

-try adding f to Q instead

-G added to Q

-H added to Q

-eAiGdCAFHbAEaBfHjfAEaJhaEfHFccCbFHbAEaBfHjfAEaJhBcfHFfCDgG

fgAbEBaIaHbAEaBEeDGdCAFHbAEaBfHjfAEaJhaEfHFccCbFHbAEaBfHjf

AEaJhBcfHFfCDgGfgdEbFHbAEaBfHjfAEaJhBfiffFfI is the identity

-try adding h to Q instead

-BhffFbCAhgGGaAhaEcbGhgGBfAhgGGaAhaEccfGFffFfCCFiAhgGGaAhaEccf

GFffFfCCFhaEfeEAfIhiI is the identity.

-try adding g to Q instead

-iBdgDEbdfgFfDBhEHbBgbaEAbAEaBIhgDEdHhAFAgeEfeEEagDEdfaEHjAgeEf

eEEaJgEG is the identity.

Thus π1(S
3 \ 938) is not bi-orderable.

The knot group of 941 is:

π1(S
3 \ 941) = 〈a, b, c, d, e, f, g, h, i, j | EhA,AiB,BiC,CjD,DjE, iAhF, jFhE, jGiF, iGjC〉
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We attempt to construct Q := Q′n,m with n = 4 and m = 1, and begin by assuming I ∈ Q.

Then the program produces the following output:

-J added to Q

-Af added to Q

-bfDDaAfAJdJdhJhAfHaIAjJHfGJgFaBAfbIAFiAfIBcDDaAfAJdJdhJhAfHaI

AjJHfGJgFaBAfbIACcAEDDaAfAJdJdhJhAfHaIAjJHfGJgFjAfJeJaBAfbCA

hhAfHaIAEfJFJeHabAfBcC is the identity.

-try adding Fa to Q instead

-AD added to Q

-AG added to Q

-Bg added to Q

-eaEbBgBeJdABgaADDAiBgIcJCEbBgBADJbBgBADjEjBgJeiBgI is the

identity.

-try adding Gb to Q instead

-BE added to Q

-Cf added to Q

-hIcCfCcADCiICCfiIFaiIIcCfiHcCfiIFaiIIcCfCCCfFBEf is the

identity.

-try adding Fc instead

-Dg added to Q

- iaBdDgDbBEBbDgAhEDgebBEBHDgIBdDgDbBEBbDgbIDgiiIIIB

is the identity.

-try adding Gd instead

-Ef added to Q

-iGeEfEgIcFcCiIAEfaAJabbIEfiIFhIHfJaFaAjBbIBB is the

identity.

-try adding Fe instead

-Ij added to Q

-aBbIjBbIjDGbcADCdAbCgGdJBEjGcDDGbcADCdaFaAdBbhd

DFcdGjGbcADCJgDHBbfJeIjDGbcADCdEaFaAjFiIjIB is the

identity.

-try adding Ji instead

-JiFgFfJiFdeFeEjGdJDdCgGdJBEjGcDDGbcADCdaFaAdDf

GiFeIfIjJidBiJgFfJiFdeFeEjGdJDdCgGdJBEjGcDDGbcAD

CdaFaAdDfGiFeIjJfJiFjIcADCbCFfJiFdeFeEjGdJDdCgGd

JBEjGcDDGbcADCdaFaAdDfcCDFcdIcD is the identity.

-try adding eb instead

-bhHbebBEIehFaHebBjCebcBFabbebBJCebcBFab is the identity.

-try adding ga instead

-gabiIIIBcJgajJADjJC is the identity.

-try adding da instead

-djFFdafFIfbiIIIBfHaFaAhJdabadaAJBDcdaCcadaACjjFFdafFIfbiIIIBfHa
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FaAhJdabadaAJBhJadaAeJEjFiFdafFIfIfHGdjFFdafFIfbiIIIBfHaFaAhJda

bhdaHJBDdagJ is the identity.

-try adding j instead

-Af added to Q

-AD added to Q

-aIfHBaADAaaADAaIAAbjhBAfbFjBaADAaIAbjeADdjDEJjADdjDJiJhAfHa

IAjiBADiIIbADIAbjBbjGjGjBaADAaIAbjeADdjDEJcADCgIcADCjiccADCCJ

gIjiJjB is the identity.

-try adding da instead

-HjHadaAhBAfbIJIjJIhaJdaiIAfiIIjAaIAbjjHadaAhBAfbIJIjJBAfbcICJI

bdaBAfbBBAfbiB is the identity.

-try adding Fa instead

-AD added to Q

-fhADiIIHjFaADAajAijjJjIiFaI is the identity.

-try adding da instead

-AG added to Q

-caAGAadaAeIAGiFjfECjjFajjJJ is the identity.

-try adding ga instead

-eCHhgaHjFaJjiIIhjcIAgaaHdjFaJjiIIDhiBFabEAgaaHdjFaJjiIIDhEjjJje

DdaHjFaJjiIIhaHHjFaJjiIIhEjehFaAd is the identity.

Thus π1(S
3 \ 941) is not bi-orderable.
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